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Abstract 
This paper summarises the first stage of an ACARP Research and 
Development project to evaluate the utility of satellite remote sensing for air 
quality management within the mining industry. The project investigates the 
options available using both publicly available and commercial data sets 
generated by the latest generation of satellite imagery. 

The two metrics that are routinely observed using satellite imagery relevant to 
the mining industry emissions are methane (XCH4) and particulate matter 
(Aerosol Optical Depth; AOD). The former is relevant for greenhouse gas 
management, the latter for mine-site dust management. 

In addition to identifying the benefits of currently available technology and 
techniques, this work will also critically evaluate the limitations and constraints 
of the technology. 

In the case of methane observations, use of ‘top-down’ (satellite) based 
estimates can challenge / validate the ‘bottom up’ (empirical observations) 
values that are currently being used for emission estimation under the 
National Greenhouse and Energy Reporting (NGER) scheme. Any refinement 
to methane quantification (from exposed coal, overburden and interburden) 
will lead to refinement of financial obligations under any future price on carbon.  

In the case of regional particulate transport, even a qualitative evaluation of a 
specific dust event, viewed at a regional scale, can assist with understanding, 
and ultimately managing, dust emissions.  

The approach to this study involves the completion of an extensive literature 
review of the state-of-the-science as it relates to high spatial and temporal 
observations of methane and particulate matter using satellites. Dependent 
upon the outcomes of this research, one or both of these remote sensing 
techniques may be taken forward for a ‘deep dive’ into its applicability for 
mining emissions management. The current paper provides a summary of the 
outcomes of this first stage of the project. 
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1. Introduction 
The objective of this work is to review the value of 
current, future, and proposed satellite observations 
to better quantify and understand methane and PM 
emissions associated with the mining industry. 

We provide an extensive literature review of the 
state-of-the-science as it relates to high spatial and 
temporal observations of methane and particulate 
matter using satellites. Dependent upon the 
outcomes of this research, one or both of these 
remote sensing techniques may be taken forward for 
a ‘deep dive’ into its applicability for mining 
emissions management.  

During our evaluations, we identify what can, and 
cannot, be achieved using existing satellite 
information. We document the limitations and areas 
of uncertainty within the technology / techniques. 

 

2. Methane remote sensing 

2.1. Instrumentation 
Multiple methane-detecting satellites are either in 
place or planned for launch over the next two to three 
years.  Each satellite / group of satellites has distinct 
capabilities and purpose, and their funding ranges 
from public sector, private sector and non-profit.  

The methane-detecting satellites that are currently 
deployed can be divided broadly into:  

 Area Flux Mappers:  can track methane over very 
wide areas but can see only large emissions and 
lack the resolution to identify individual sources; 

 Point-Source Imagers:  have fine-grained spatial 
resolution for targeting known sites but lack 
sensitivity to detect smaller emission sources. 

The next generation of methane-detecting satellites, 
such as MethaneSAT, are designed with the 
capability to bridge the gap: with a wide field of view 
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to detect methane sources across wide areas with 
high precision. 

The TROPOMI instrument was launched in 2017 on 
board the Sentinel-5 Precursor (Sentinel-5P) 
satellite, a Low Earth Orbiter (LEO) with a sun-
synchronous orbit that overpasses at 13:30 local 
solar time. Daily global coverage offered by 
TROPOMI is a useful way to spot high emission 
events, and can be used as a tool to look for possible 
targets for other point-source orientated satellites. 

A different observing strategy by the privately-
operated GHGSat (first instrument launched in June 
2016) targets limited viewing domains with very fine 
pixel resolution to detect a wide range of methane 
point sources. 

It is envisaged that in the future, full constellations of 
imagers, covering the globe daily, will become 
available. At present, intermittent high-resolution 
imagery can be coupled with regular low-resolution 
images (such as from TROPOMI) to fill the gaps in 
coverage. 

Capability for regional mapping of methane 
emissions is expected to greatly expand in the future 
with the MethaneSAT, GOSAT-GW, and CO2M 
instruments. (Jacob et al, 2022). 

Targeted observation of methane point sources from 
space began with the 2015 Aliso Canyon blowout 
using the Hyperion hyperspectral sensor (Jacob et 
al., 2022). Hyperspectral and multispectral imaging 
spectrometers designed to observe land surfaces at 
high spatial resolution (Hyperion, PRISMA, Sentinel-
2, Landsat-8/9, WorldView-3) have also shown 
capability to detect large methane point sources in 
their short-wave infrared (SWIR) bands. 

For example, Varon et al., 2021 have demonstrated 
the capability of the current Sentinel-2 twin satellites 
to detect and quantify strong methane point sources 
globally with both fine pixel resolution and frequent 
revisits. Sentinel-2 was originally designed to 
provide operational data products for environmental 
risk management, land cover classification, land 
change detection, and terrestrial mapping, as a 
complement to the Landsat and SPOT satellite 
missions. Sentinel-2 comprises two satellites 
positioned 180° out of phase in the same sun-
synchronous orbit, with an Equator-crossing time of 
10:30 (local solar time) at the descending node. 
Sentinel-2A was launched in 2015 and Sentinel-2B 
in 2017. Each satellite carries a MultiSpectral 
Instrument (MSI) that continuously sweeps the 
Earth’s surface in 13 spectral bands from the visible 
to the SWIR at 10–60m pixel resolution over a 
290 km cross-track swath. The twin satellite 
configuration enables full global coverage every 
5 day and 2–3 day revisit rates at midlatitudes. 
Varon et al. (2021) demonstrate that Sentinel-2 
SWIR bands 11 (~1560–1660 nm) and 12 (~2090–
2290 nm), with 20 m pixel resolution, can be used to 

detect methane plumes from point sources and 
quantify source rates. 

Figure 1 shows the classification of satellite 
instruments by their capability to observe 
atmospheric methane on global scales, on regional 
scales with high resolution, and for point sources. 

 
Figure 1. Satellite instruments classified according 

to ability to observe Global, Regional and Point 
Source Scales (Jacob et al, 2022) 

2.2. Methods 
Atmospheric methane is detectable by its absorption 
of radiation in the SWIR at 1.65 and 2.3 μm, and in 
the thermal infrared (TIR) around 8 μm. Satellites 
equipped with SWIR instruments measure solar 
radiation backscattered by the Earth and its 
atmosphere (Jacob et al, 2016). 

The general principle used for methane 
quantification is similar across the majority of 
satellite sensors, a schematic of which is shown in 
Figure 2. 

 
Figure 2. Schematic showing the spectrally 

specific absorption of reflected sunlight 
(earthshine) by a CH4 plume and detection by 

satellite (after Day et al, 2017) 

Figure 3 shows the shows the atmospheric optical 
depths of different gases in the SWIR, highlighting 
the methane absorption bands at 1650 and 
2300 nm. All first-generation solar backscatter 
instruments operated at 1650 nm, however 
TROPOMI operates at 2300 nm. GOSAT-2 operates 
at both (Jacob et al., 2016). 
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Figure 3. Atmospheric optical depths of major 
trace gases in the SWIR (Jacob et al, 2016) 

2.2.1. Data retrieval and screening 

The majority of recent peer reviewed papers using 
methane-detecting satellites have been completed 
using the TROPOMI data set. As such, additional 
detail in the methods of accessing, processing and 
interpreting these data is provided. 

Current TROPOMI CH4 observations, which are 
available for the inner two-thirds of its total swath and 
only over land, are vertically integrated columns 
sensitive to the troposphere. With an effective swath 
of ~1750 km wide from the along-track position and 
a ground pixel size of 7 km x 5.5 km, TROPOMI CH4 
data can provide near-global daily coverage at high 
horizontal resolution over land, but they are limited 
by cloud cover and retrieval quality (Barre et al., 
2021). 

The European Space Agency (ESA) releases both 
Level 1 and Level 2 data products. The Level 1 data 
product represents raw radiance and irradiance 
measurements from the TROPOMI instrument. 

TROPOMI methane retrieval is generally completed 
using the TROPOMI operational CH4 data product 
(Hu, 2016), which implements the RemoTec retrieval 
algorithm. The operational algorithm uses a two-
band retrieval approach using the NIR and SWIR 
bands. The SWIR band contains the CH4 information 
and the NIR band is used for correction for aerosols. 

Level 2 data products are released in terms of XCH4, 
the column-averaged dry air mixing ratio for 
methane. This is expressed as a concentration (ppb) 
within the column of air being observed by the 
satellite at a given point in time during its orbit. 
Values of XCH4 include the scientific and 
operational XCH4 data products (used by Sadavarte 
et al., 2021a) and the XCH4 bias corrected data 
product (adopted by Lauvaux et al., 2022). 

2.2.2. Plume detection 

Lauvaux et al. (2022) describe the approach taken 
by their automated plume detection algorithm, with 
plume enhancements defined as >25 ppb averaged 
over several pixels. 

At every orbit, the TROPOMI instrument produces 
13 to 14 images (tiles) with a 2600 km swath width. 
Each tile is then processed with a plume detection 
procedure. The mean, median and standard 
deviation of a given pixel is calculated by comparing 
an 11 × 11 pixel ‘patch’ with the pixel of interest at its 
centre. These data are then used to create an 
‘anomaly map’ across the whole image. Adjacent, 
overlapping plumes are then separated using a 
technique known as watershed separation. Initial 
plume identification (by tracing any identified plumes 
upwind) is then confirmed by human labelling. A 
visualisation of this process is provided in Figure 4. 

 
Figure 4. Major steps in plume detection 

algorithm, including deblending step (Lauvaux et 
al. 2022) 

The final step employed in plume detection is human 
labelling. This involves rejection of candidate plumes 
according to the following criteria (Lauvaux et al., 
2022): 

1. Plume is inconsistent with the wind direction 
from the ERA5 reanalysis product (i.e. plume 
formation is inconsistent with the prevailing 
wind direction at the time); 

2. Plume spatial distribution correlates with that of 
the Surface Albedo SWIR product provided by 
Sentinel-5P (i.e. plumes with strong correlation 
to surface albedo are rejected); 

3. Plume spatial distribution correlates with spatial 
patterns visible in optical images (for the same 
rationale as above). 

2.2.3. Inferring methane emissions 

The studies within the literature generally seek to 
use values of XCH4 within identified plumes to then 
quantify the individual methane emission sources 
that have led to these enhanced concentrations 
being observed. 

A number of techniques have been used to quantify 
the mass emission of methane, Q (Schneising et al, 
2020). All of these techniques require the derivation 
of mass emission using satellite-observed total 
column methane (in ppb) and referencing concurrent 
meteorology to estimate methane flux (so-called 
inverse methods). 
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Jacob et al., 2022 summarises seven different 
methods for inferring source rate, Q, from satellite 
observations of instantaneous plumes of methane 
column enhancements ΔΩ [kg m-2] relative to 
background.  

A graphical summary of these methods is provided 
in Figure 5. 

 
Figure 5. Seven methods to estimate point source 
rates Q from satellite-observed methane column 

enhancements (Source: Jacob et al, 2022) 

2.3. Limitations and uncertainties 

2.3.1. Temporal / spatial limitations 

An issue with all LEO satellite data is that, by 
definition, they only provide a snap-shot in time, for 
the period when the satellite is above the area of 
interest. In the case of the TROPOMI instrument, this 
is one observation daily. 

The GHGSat-D, however, has an average revisit 
time of about two weeks, depending on latitude. 

Jacob et al. (2022) note that observing point sources 
from space has unique requirements; plumes are 
typically less than 1 km in size, thus requiring 
satellite pixels finer than 60 m. 

2.3.2. Interference from clouds, humidity and 
aerosol 

Methane-detecting satellites require the area of 
observation to be cloud-free. In the work completed 
by Sadavarte et al, 2021, a total of 124 clear-sky 
observations (over 75 orbits) passed the data 
screening process, over a full two years of potential 
observations. 

On average in 2019, the TROPOMI sensor 
successfully retrieved a XCH4 measure for 7% of 
daily onshore pixels. The distribution of missing 
pixels is not homogeneous however, as some places 
(e.g. equatorial zones) are essentially missing 
whereas drier places have more than 100 measures 
per year. Considering only onshore pixels with at 
least 10 valid XCH4 measures in 2019, the daily 
proportion of covered pixels increases to 13% 
(Lauvaux et al, 2022). This is illustrated in Figure 6. 

 
Figure 6. Number of days TROPOMI provided at 
least one (quality filtered) XCH4 measurement 

during 2019 (Source: Lauvaux et al., 2022) 

Measurements in the SWIR spectral region from 
2000 to 2500 nm sample absorption features from 
water vapor, carbon dioxide, and methane (refer 
Figure 3). The 2100 to 2450 nm window is especially 
sensitive to methane and for this reason this 
wavelength band was adopted for methane 
retrievals by Irakulis-Loitxate et al. (2021). 

2.3.3. Instrument noise / artifacts 

CSIRO referenced GHGSat satellite imagery from 
late 2016 (Ong et al., 2017), and note that these 
were some of the first data acquired by GHGSat. 
Consequently, the data experienced some of the 
post launch issues related to the new sensors. 

CSIRO concluded that there remains important 
uncertainties associated with the quantitative use of 
the methane concentration map as delivered from 
GHGSat. Specifically, the level of instrument noise / 
artefacts remained a concern and there appeared to 
be influences of the local geology, landforms and/or 
compositional material that may require to be 
accounted for in the retrieval of the methane 
products (Ong et al., 2017b). They note that the 
methane concentration image can potentially be 
improved visually with noise removal techniques. 
While the application of such techniques improve the 
visual look of the methane concentration map, 
CSIRO concluded that it will not improve the 
accuracy of the data. 

CSIRO’s conclusion (Ong et al., 2017) is applicable 
to other methane remote sensing solutions apart 
from GHGSat. Namely, that the measurement of 
methane from space is a highly demanding task 
because the sources are usually small, compounded 
by the large vertical column from space to earth 
(>500 km). Further, the spectral features are very 
narrow and the spectral region where these features 
occur overlap with other atmospheric features (water 
vapour) and other surface features (minerals and dry 
plants). In addition, passive sensors rely on sunlight 
to provide the illumination/energy, which is generally 
quite low in those spectral regions. The signal 
received from fine-pixel instrumentation would also 
be small because it is integrating over a small area. 
This is opposed to other GHG sensors which are 
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integrating over much larger areas to obtain higher 
signals.  

Finally, Varon et al. (2020) note that satellite scenes 
can illustrate GHGSat-D retrieval artefacts resulting 
primarily from striping noise, surface reflectance 
variability, and stray light. Some artefacts were 
found to be similar in magnitude to the plumes, which 
led the authors to highlight the importance of prior 
knowledge of source location. 

2.3.4. Spatially variable bias 

Surface albedo bias occurs in methane-detecting 
satellite data. This is screened by rejecting orbits that 
show a high correlation of XCH4 with surface albedo. 

Biases induced by the albedo in the XCH4 retrievals 
from TROPOMI (and other satellite instrumentation) 
are well-known but not properly removed in the 
official Level 2 data product (ESA 2020). To 
overcome this, it is good practice to discard all 
detected plumes with a strong correlation with the 
surface albedo to avoid false positives. For the same 
reason, all plume candidates matching spatial 
patterns visible in optical images should be removed 
from analysis. 

2.3.5. Use of ERA5 meteorological data set 

The ERA5 global meteorology is often referenced in 
inferring methane emissions. These data are coarse, 
at a resolution of approximately 30 km × 30 km. 
Application of wind speeds derived at this resolution 
introduces significant uncertainty in the source rate. 

Jacob et al. (2022) note that lack of precise wind 
speed information is a major source of error for 
interpreting satellite observations because plume 
concentrations vary as the ratio Q/U, meaning that 
errors in U propagate linearly to errors in Q. 

Varon et al. (2018) highlight that while low winds are 
beneficial for source detection, they are detrimental 
for source quantification. This is problematic for 
source quantification in, say, the Bowen basin of 
Queensland, where average wind speeds are low 
given the semi-tropical location. Varon et al. (2018) 
conclude that additional error applies if local wind 
speed measurements are not available and may 
dominate the overall error at low wind speeds. 

2.3.6. Reliance upon bottom-up inventory data 

Bottom-up emission inventory data is used in 
satellite methane emission estimation, both for 
comparison against satellite-derived emission 
estimates, and to subtract other sources that may be 
seen in methane plume observations from a given 
source. Both the spatial and emissions granularity of 
the bottom-up inventory data present issues.  

Sadavarte et al. (2021) state that the estimated 
contributions from other surrounding anthropogenic 
sources (coal mines, coal seam gas (CSG) activities, 

etc) are subtracted from downwind plume prior to the 
final calculation of source rate Q. 

Other anthropogenic sources are estimated using 
bottom-up emission estimates in the public domain. 
This is problematic, since much of this information 
relied upon the global GHG emissions dataset 
EDGARv4.3.2, which was published in 2017 and 
represents the most recent year 2012 (JRC, 2022). 
EDGARv4.3.2 was relied upon to provide estimates 
for coal mine activity, with 2012 values subsequently 
scaled proportionally relative to changes in coal 
production for Queensland between 2012 and the 
analysis years (2018-19). It was also relied upon to 
derive estimates for other sources in the database, 
including energy, transport, wastewater, landfills, 
agriculture including livestock, paddy cultivation. 
Estimation of Oil & Gas methane generation 
referenced the global methane inventory by Scarpelli 
et al. (2020) available for the calendar year 2016. All 
inventory sources are provided on a 0.1° × 0.1° grid 
resolution (approximately 10 km × 10 km). This 
means that multiple sources may be aggregated 
within a single grid square, with significant 
opportunity for sources to be confounded at such 
spatial resolution. 

Connecting top-down information on methane 
emissions to the improvement of bottom-up 
emission inventories remains a challenge (Jacob et 
al., 2022). Ultimately, the goal of top-down estimates 
must be to improve bottom-up inventories, as the 
latter provide the foundational tools for climate policy 
by relating emissions to processes. Where 
discrepancies are identified by satellite for a 
particular sector, this should motivate work to 
improve activity and/or emission factor estimates for 
that sector. The new International Methane 
Emissions Observatory (IMEO) aims to facilitate this 
infusion of top-down information into the 
improvement of bottom-up inventories 

3. Particulate Matter 
Using satellite data to estimate ground-level 
particulate matter (PM) concentrations still remains 
difficult. There are two main methods in the 
literature, one using the differences in brightness 
temperature (BTD) (Sowden et al, 2020), using the 
infrared wavelengths, and the other focussing on 
aerosol optical depth in the visible spectrum. 

Aerosol Optical Depth (AOD) is a measure of the 
extinction of electromagnetic radiation by dust and 
haze, which can absorb or scatter light. It is 
dimensionless and is related to the total amount of 
aerosol in the vertical column of the atmosphere over 
a specific location. It expresses the quantity of light 
removed from a beam of light by scattering and/or 
absorption during its path through the atmosphere. It 
can be measured both from space (via satellite) and 
the ground (via the AERONET network). 
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The methodologies using AOD to estimate PM have 
been well researched in peer-reviewed papers for 
the last 20 years (Li et al., 2015, Zaman et al., 2017, 
Sotoudeheian et al., 2016, Yumimoto et al, 2016). 
Much of this work has been done using retrievals 
from the MODerate-resolution Imaging Spectro-
radiometer (MODIS) instrument on NASA’s Terra 
satellites. Measurements from these LEO satellites 
are temporally limited but have superior spatial 
resolution to the newer generation of Geostationary 
Earth Orbit (GEO) satellites such as Himawari-8.  

The Himawari AOD retrievals have been shown to 
have good correlation with ground based AOD 
measurements from the AERONET network (She et 
al, 2018, Zhang et al. 2018) as shown in Figure 6. 

 
Figure 6. Scatter plots of Himawari AOD against 

AERONET AOD (Source: Zhang et al., 2018) 

Statistical models developed to estimate PM from 
AOD have shown that direct comparisons are poor 
and that non-linear multivariant regression models 
improve these estimates as they take into account 
meteorological parameters and, in some instances, 
landuse (Ghotbi et al., 2016). There is still work 
required to improve these algorithms as there can be 
significant gaps in datasets, confounding the PM-
AOD relationship. An example of this can be seen by 
comparing two images from the MODIS instrument 
on the same day – January 4, 2020, during the 
bushfires on the east coast of Australia (Figure 7). 
The AOD shows considerable data gaps over some 
of the most intense areas of high PM. 

As AOD is, by definition, limited to the visible 
spectrum, the temporal resolution will always be low 
(i.e. daytime only). Work done to compare AOD with 
ground-based measurements is therefore limited to 
longer timeframes and the conflict with continuous 
data requirements for air quality applications 
remains. The main advantage of using the 
alternative BTD methods is that it uses the infrared 
spectrum, enabling measurements 24-hours per day 
and therefore achieving high temporal resolution. 
This method has had limited success to date 

(Sowden, 2020b), due to confounding factors such 
as water vapour / clouds inhibiting the determination 
of aerosol composition. However, more work is 
being completed to develop methods to improve it. 
Development of a successful technique could have 
significant practical applications for mining areas in 
the future and should be watched with interest. 

 

  

Visual image AOD overlaid on visual 
image 

Figure 7. Comparison of MODIS visual and AOD 
images on 4 January, 2020 

(Source: https://worldview.earthdata.nasa.gov/) 

4. Next Steps 
Global satellite instrument validation exercises are 
well established, using either satellite-to-satellite 
comparisons (e.g. TROPOMI vs GOSAT) or 
satellite-to-ground observation (e.g. Total Carbon 
Column Observing Network; TCCON). However, 
except for the limited success of Day et al, 2017, no 
methane satellite ground-truthing exercises have 
been completed that are specific to Australian coal 
mining activities, or their respective geographies. 

It is suggested that future investigations could 
reference directly-measured methane emissions at 
source (e.g. ventilation air methane measured by the 
underground coal mining industry in Australia).  

To enable such an exercise, a candidate mine would 
need to be established for comparison against 
satellite predictions. This would require access to the 
continuous methane concentration / volumetric flow 
data from an Australian underground coal mine with 
limited fugitive methane sources (all methane 
reporting to upcast ventilation shafts). 

The intention would be to use these accurate, 
ground-based observations to compare with the 
inferences of methane emissions able to be derived 
using data from the TROPOMI instrument. 

An alternative direction would be to focus the 
research on gathering field data to ground-truth 
claims made using satellite observations in isolation. 
Several researchers (Cusworth et al., 2018, Jacob et 
al, 2022) acknowledge that synergy with suborbital 
(ground-based and airborne) platforms is essential 
for a multi-tiered observing strategy. 
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Suborbital observations have a unique role to 
complement the intrinsic limitations of satellites in 
terms of spatial resolution, return time, cloud cover, 
dark surfaces, and nighttime. Surface 
measurements are typically ten times more sensitive 
to local emissions than satellite observations 
(Cusworth et al., 2018, Jacob et al., 2022). 

Finally, given that there is potentially a strong 
relationship between AERONET AOD and Himawari 
AOD data, a study relating local AERONET to local 
PM monitoring data (DPE Merriwa) may be of value. 
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